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Neutrino Oscillation

Neutrino flavor eigenstates and mass eigenstates are “mixed”

Neutrinos change their flavor as a function of time (travel distance)

1.1. PHYSICS OF NEUTRINOS

the Cabibbo-Kobayashi-Maskawa matrix for quark mixing:

U =




1
c23 s23

−s23 c23







c13 s13e−iδ

1
−s13eiδ c13







c12 s12

−s12 c12

1




=




c13c12 c13s12 s13e−iδ

−c23s12 − s13s23c12eiδ c23c12 − s13s23s12eiδ c13s23

s23s12 − s13c23c12eiδ −s23c12 − s13c23s12eiδ c13c23



, (1.12)

where cij ≡ cosθi j, sij ≡ sinθi j, θi j is the mixing angle for each flavor, and δ is a
complex phase which causes the CP violation.

Now we consider the time evolution of a state that is in a flavor eigenstate να
at t = 0. The initial state is represented as

|να(t = 0)〉 =
∑

i

Uαi |νi〉 . (1.13)

The time evolution of the state depends on its energy eigenvalues, and is repre-
sented as

|να(t)〉 =
∑

i

Uαi e
−iEit |νi〉 , (1.14)

E2
i = p2 +m2

i , (1.15)

where p and m1,2,3 are the neutrino momentum and masses, respectively. Here,
the probability that a neutrino in a flavor eigenstate να at t = 0 is observed as νβ at
time t, (Pα→β), is formulated as

Pα→β =
∣∣∣∣
〈
νβ(t)|να(0)

〉∣∣∣∣
2

(1.16)

=
∑

i

∣∣∣∣
〈
νβ(0)|Uβie−iEitU†αi|να(0)

〉∣∣∣∣
2

=
∑

i

∣∣∣UαiUβi
∣∣∣2 +
∑

i! j

UαiU∗βiU
∗
α jUβ je−i(Ei−Ej)t.

As a consequence of flavor mixing for massive neutrinos, the flavor transition
phenomenon, called ”neutrino oscillations,” could take place.

It is instructive to describe the probabilities in the framework of two-flavor
mixing. Considering two flavors of να and νβ, the matrix U is given as follows:

U =
(

cosθ sinθ
− sinθ cosθ

)
. (1.17)
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CHAPTER 1. INTRODUCTION

The probability for να → νβ oscillation is given as

P(να → νβ) = sin2 2θ sin2
(

(Ei − Ej)t
2

)
. (1.18)

Making an approximation of Ei ∼ p +m2
i /2p and including the factors of ! and c,

the probability is formulated as

P(να → νβ) = sin2 2θ sin2
(

1.27∆m2[eV2]L[km]
E[GeV]

)
, (1.19)

where ∆m2 ≡ m2
j −m2

i is the mass-squared difference and L is the flight length of
neutrino.

If the neutrino mass states mix together and their eigenvalues are different,
that is θ ! 0 and ∆m2 ! 0, neutrinos can change their flavor during travel. Thus,
the observation of neutrino oscillation gives an evidence for the finite neutrino
mass. The oscillation amplitude is characterized by the mixing angle θ and the
mass-squared difference ∆m2, and expressed as a function of L/E. The oscillation
effect is enhanced to the maximum when the following condition is satisfied:

L [km]
E [GeV]

=
π

2.53 · ∆m2 [eV2]
. (1.20)

1.2 Search for neutrino oscillation

Currently, there is no theoretical prediction on neutrino masses, and many exper-
iments have been performed to probe the masses of neutrinos. Up to now, the
evidence for neutrino oscillations has been discovered by various experiments.
The neutrino oscillation experiments measure the sizes of the squared-mass differ-
ences and the mixing angles; these are called ”oscillation parameters”. Figure 1.2
shows the regions of neutrino oscillation parameter space allowed or excluded
by various experiments. In this chapter, we introduce neutrino oscillation exper-
iments and summarize our current knowledge of the oscillation phenomena.
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θ：mixing angle
Δm2：Difference of mass squared
L： Travel distance
E： Neutrino Energy
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sij = sin θij , cij = cos θij

α = e, μ, τ (Flavor eigenstates)
 i  = 1, 2, 3 (Mass eigenstates)

MNS matrix

4
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Neutrino Oscillation 
Observations

Atmospheric region: Δm2 ~ 10-3 eV2

Super-K etc (Atmospheric neutrino)

K2K, MINOS (Accelerator neutrino)

Solar region: Δm2 ~ 10-5 eV2

SNO, etc (Solar neutrino)

KamLAND (Reactor neutrino)

High Δm2 region: Δm2 ~ 1 eV2

Observed at LSND (νµ→ νe) experiment, 

but not confirmed other experiment.

13. Neutrino mixing 13
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Figure 13.4: The regions of squared-mass splitting and mixing angle favored or
excluded by various experiments. This figure was contributed by H. Murayama
(University of California, Berkeley). References to the data used in the figure can
be found at http://hitoshi.berkeley.edu/neutrino/.

July 24, 2008 18:04
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However, only 2 Δm2 regions are allowed in 

the current SM with 3 neutrino generations
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MiniBooNE’s νe appearance 
search at Δm2 ~ 1eV2

Search for νe signal in νµ 

beam.

νµ flux is used to normalize 
intrinsic νe backgrounds.

No νe appearance signal is 
observed.

LSND signal is ruled out if 
P(νµ→ νe) = P(νµ→ νe)
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Search for non-standard model 
interaction.

Sterile neutrino, etc..

MiniBooNE’s first result is 
based on the spectrum shape 
only analysis.

Limited by large flux and    
x-section uncertainties.

A near detector (SciBooNE) 
can strongly constrain flux and 
x-section errors.
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MiniBooNE’s νµ disappearance 
search at Δm2 ~ 1eV2
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Experimental 
Setup

Fine-grained detector (SciBar) on the 
Fermilab Booster Neutrino Beamline.

Cross section measurement for ~1 GeV 
neutrino and anti-neutrino

Essential for future neutrino 
oscillation measurements (T2K, etc)

MiniBooNE near detector

Measure un-oscillated neutrino fluxes.
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Target hall
Decay tunnel

SciBooNE detector

We are here

GeV



SciBooNE

SciBooNE

SciBooNE

1

SciBooNE Collaboration
Universitat Autonoma de Barcelona
University of Cincinnati
University of Colorado
Columbia University
Fermi National Accelerator Laboratory
High Energy Accelerator Research 
Organization (KEK)
Imperial College London*
Indiana University
Institute for Cosmic Ray Research
Kyoto University*
Los Alamos National Laboratory
Louisiana State University
Purdue University Calumet
Università degli Studi di Roma and INFN-
Roma
Saint Mary’s University of Minnesota
Tokyo Institute of Technology
Universidad de Valencia

 ~70 Physicist                              

from 17 institutes, 5 countries
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SciBooNE detector

11

Muon Range Detector
(MRD)

Electron Catcher (EC)

SciBar

ν 

• 12 2”-thick steel
  + scintillator planes
• measure muon
  momentum with range
  up to 1.2 GeV/c

• spaghetti calorimeter
• 2 planes (11 X0)
• identify π0 and νe

• scintillator tracking
  detector
• 14,336 scintillator
  bars (15 tons)
• Neutrino target
• detect all charged
  particles
• p/π separation
  using dE/dx

2m

4m

Used for K2K experiment.
Shipped to and re-
assembled at FNAL

Newly built at FNAL with 
materials from past experiments
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SciBooNE Data Taking

Start beam data taking in June 2007

Data taking completed in August 
2008

Stable data taking

Total 2.52x1020 POT for analysis 
(95% of delivered)

Neutrino: 0.99x1020 POT

Anti-neutrino: 1.53x1020 POT

12

Results from full neutrino 
data set are presented today
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SciBooNE Timeline
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•! 2005, Summer - Collaboration formed 

•! 2005, Dec - Proposal 

•! 2006, Jul  - Detectors move to FNAL 

•! 2006, Sep - Groundbreaking 

•! 2006, Nov - Sub-detectors Assembly 

•! 2007, Apr - Detector Installation 

•! 2007, May - Commissioning 

•! 2007, Jun – Started Data-taking 

•! 2008, Aug – Completed data-taking 

•! 2008, Nov – 1st physics result 

3 years from 

formation to     

1st physics result



 Flux Measurement 
at SciBooNE

SciBooNE Detector Installation   April, 2007
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Event Selection

Select MIP-like energetic tracks (Pµ>0.25GeV)

Reject side-escaping muons.

3 samples:

SciBar-stopped (Pµ,θµ)

MRD-stopped (Pµ,θµ)

MRD-penetrated (θµ)

15
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Use charged current 
inclusive sample

Pμ: Muon momentum 
reconstructed by its 
path-length
θμ: Muon angle w.r.t. 
beam axis
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Event Selection (Timing)

2 µsec beam timing window.

Less than 0.5% cosmic 
background 
contamination.

~14K SciBar-stopped events.

~20K MRD-stopped events.

~4K MRD-penetrated 
events.
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Reconstructed 
Interaction Vertices
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Extracting Eν Spectrum

Use muon kinematics to extract 
Eν information

Good coverage of entire 
kinematic region with these 3 
samples.

18

Thu Nov  6 17:18:48 2008

 (GeV)µTrue P
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fl
ux

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

-910×

Generated in FV

Total selected

SciBar stopped

MRD stopped

MRD penetrated

 (All CC event)µTrue P

Thu Nov  6 17:18:54 2008

 (deg)µ!True 
0 20 40 60 80 100 120 140 160 180

Fl
ux

0
0.5

1

1.5
2

2.5
3

3.5
4

-910×

Generated in FV

Total selected

SciBar stopped

MRD stopped

MRD penetrated

 (All CC event)!True 

SciBar 
geometry 
effect

θμ

Pr
eli
m
in
ar
y

Pr
eli
m
in
ar
y

1.4 MuonRangeReconstruction 3

1.4 MuonRangeReconstruction

Finally, associated MRD hits for a SciBar 3D track are defined as the combination of the associated hits for
the SciBar 2D track projection pair.

To reconstruct the number of layers which muons penetrate, the MRD hits are searched from the upstream
counters.

• If there is no hit on 2 continuous plane (say, i-th and (i+1)th plane), then the muon is penetrated to
the center of iron plate between (i-1)th and i-th plane.

• The muon is assumed to be stopped if i is not equal to 13 (last plane) and if there is no hit on the
side-end counters on (i-2)th and (i-1)th plane.

There are a few exceptions:

• If there are hits until 12th plane and no hit on 13th, we assume the muon is reached to the iron between
12th and 13th.

• If there is a hit only on 1st plane, only the side counters on 1st plane are used for stop identification.
In that case, we don’t have hit position information for X direction, but requirement of MRD incident
position , which is described later in this document, works as an substitute.

The rough sketch of the above method is shown in Figure 2.

MuonRangeReconstru
ction (stopping point)

Find MRD hits to associated to “SciBar 

3D tracks” and scan them from the 

upstream.

“Stopped” if there are no hits in 2 

continuous plane, no hit on 13th (last) 

plane, and no hit on side-end counters

Hit

HitNo 

hit

No 

hit

“Stopped” here

Ignore

Figure 2: Definition of the MRD stopped position.
In this case, the muon is assumed to be stopped at
the center of the 2nd iron plate.

The path-length of the particle is calculated assuming a strait path from the vertex in SciBar to the
stopped point in MRD. Then, we sum up the energy deposit in SciBar, EC and MRD to reconstruct the
kinetic energy. For SciBar and EC mean MIP energy deposits are assumed. For MRD, we use range-to-energy
look-up table used in K2K MRD.

The momentum is reconstructed assuming muon mass.The parent neutrino energy is reconstructed as-
suming CC-QE interaction as given by the following formula,

Eν =
m2

p − (mn − V )2 −m2
µ + 2(mn − V )Eµ

2(mn − V − Eµ + pµ cos θµ)
,

where mp, mn and mµ are the mass of proton, neutron and muon, respectively, and V is the nuclear potential
energy (= 27MeV ).

The reconstructed q2 is given by,

q2 = 2Eν(Eµ − pµ cos θµ)−m2
µ.

(Assuming CC-quasi-elastic scattering)

Pμ
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Spectrum Fitting
Determine Eν spectrum shape and normalization 
by fitting Pµ and θµ distributions.
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Flux Prediction at 
SciBooNE

Originally ~20% flux and 
cross-section uncertainty.

Measure the neutrino 
interaction rate at a few % 
uncertainty.

We found the neutrino 
interaction rate is higher at 
~1GeV than predicted by 
MC.
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Flux Prediction at 
MiniBooNE
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Reconstructed Eν at 
MiniBooNE
Reconstruct Enu 
assuming CC Quasi-
Elastic scattering
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1.4 MuonRangeReconstruction

Finally, associated MRD hits for a SciBar 3D track are defined as the combination of the associated hits for
the SciBar 2D track projection pair.

To reconstruct the number of layers which muons penetrate, the MRD hits are searched from the upstream
counters.

• If there is no hit on 2 continuous plane (say, i-th and (i+1)th plane), then the muon is penetrated to
the center of iron plate between (i-1)th and i-th plane.

• The muon is assumed to be stopped if i is not equal to 13 (last plane) and if there is no hit on the
side-end counters on (i-2)th and (i-1)th plane.

There are a few exceptions:

• If there are hits until 12th plane and no hit on 13th, we assume the muon is reached to the iron between
12th and 13th.

• If there is a hit only on 1st plane, only the side counters on 1st plane are used for stop identification.
In that case, we don’t have hit position information for X direction, but requirement of MRD incident
position , which is described later in this document, works as an substitute.

The rough sketch of the above method is shown in Figure 2.

MuonRangeReconstru
ction (stopping point)

Find MRD hits to associated to “SciBar 

3D tracks” and scan them from the 

upstream.

“Stopped” if there are no hits in 2 

continuous plane, no hit on 13th (last) 

plane, and no hit on side-end counters

Hit

HitNo 

hit

No 

hit

“Stopped” here

Ignore

Figure 2: Definition of the MRD stopped position.
In this case, the muon is assumed to be stopped at
the center of the 2nd iron plate.

The path-length of the particle is calculated assuming a strait path from the vertex in SciBar to the
stopped point in MRD. Then, we sum up the energy deposit in SciBar, EC and MRD to reconstruct the
kinetic energy. For SciBar and EC mean MIP energy deposits are assumed. For MRD, we use range-to-energy
look-up table used in K2K MRD.

The momentum is reconstructed assuming muon mass.The parent neutrino energy is reconstructed as-
suming CC-QE interaction as given by the following formula,

Eν =
m2

p − (mn − V )2 −m2
µ + 2(mn − V )Eµ

2(mn − V − Eµ + pµ cos θµ)
,

where mp, mn and mµ are the mass of proton, neutron and muon, respectively, and V is the nuclear potential
energy (= 27MeV ).

The reconstructed q2 is given by,

q2 = 2Eν(Eµ − pµ cos θµ)−m2
µ.

Rec. Eν w/o SciBooNE data 

Rec. Eν constrained by SciBooNE data 

Uncertainty for MiniBooNE Rec Eν is reduced to ~5 % level

We fit this prediction to data to search for νµ disappearance
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Conclusion
SciBooNE experiment

Precise Cross-section measurement at ~1GeV

Neutrino flux measurements as a MiniBooNE near detector

Search for short-baseline νµ disappearance

Search for non-standard model neutrino interactions.

Established the method to constrain MiniBooNE data by SciBooNE.

Joint SciBooNE-MiniBooNE νµ disappearance result will be released soon!

There are many cross-section result from SciBooNE!

Search for CC coherent π+ production (Phys. Rev. D78:112004,2008)

CC/NC (quasi) elastic Scattering

CC/NC 1π production

Anti-nu cross-sections

νe flux measurements
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See Sam Zeller’s talk at Users 

Meeting tomorrow 11:00~!


